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In this paper we calculate the Rayleigh-Brillouin spectrum for a relativistic simple fluid according to three
different versions available for a relativistic approach to nonequilibrium thermodynamics. An outcome of these
calculations is that Eckart’s version predicts that such spectrum does not exist. This provides an argument to
question its validity. The remaining two results, which differ one from another, do provide a finite form for
such spectrum. This raises the rather intriguing question as to which of the two theories is a better candidate to
be taken as a possible version of relativistic nonequilibrium thermodynamics. The answer will clearly require
deeper examination of this problem.
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I. INTRODUCTION

It is a well-known fact that light scattering by a simple
fluid in equilibrium at a certain temperature T and pressure p
is one conclusive test to verify Onsager’s linear regression of
fluctuations hypothesis �1�, a basic assumption in classical
irreversible thermodynamics �2,3�. Not only it constitutes the
core behind the proof of Onsager’s reciprocity theorem but it
also guarantees that the equilibrium state of the fluid is stable
under such fluctuations. Thus, it is legitimate to ask if the
various formulations of irreversible relativistic thermody-
namics so far available are at grips with such hypothesis.
Even in an indirect way, this would indicate that such theo-
ries can be tested experimentally. Indeed, in the classical
case one measures the so-called dynamic structure factor of
the fluid S�q� ,�� which represents the energy scattered by the
fluid from an incoming wave of wavelength � as a function
of frequency. The outcome of this measurement is the well-
known Rayleigh-Brillouin �RB� spectrum �4–6�. Its central
peak, the Rayleigh peak, has a width proportional to the
thermal diffusivity DT=� /�0CV, where � is the thermal con-
ductivity, �0 the equilibrium density, and CV the specific heat
at constant volume. This peak represents the intensity of the
thermal �entropy� fluctuations. Symmetrically located with
respect to this peak there appear two peaks, the Brillouin
peaks, which represent the fluctuations arising from the me-
chanical dissipative processes of the fluid, the sound or light
absorption. They are located at �= �C0k from the central
peak, C0 being the velocity of sound, if the probe is a sound
wave. Their width is given by the famous Stokes-Kirchhoff’s
formula, namely,

� =
1

2
� 1

�0
�4

3
� + 	� +


 − 1



DT� , �1�

where 
=Cp /CV and � and 	 being the shear and bulk vis-
cosities, respectively. The important feature here is that the
precise form of this spectrum can be obtained by solving the
linearized Navier-Stokes-Fourier equations of hydrodynam-
ics for the perturbations �or fluctuations� �T, ��, and �u�
present in the fluid due to its microscopic structure.

Now, it may be so that this experiment per se could not be
easily carried out in a laboratory in a relativistic regime for
technological reasons. However, one surely must expect that
the corresponding linearized equations of relativistic hydro-
dynamics lead to a relativistically modified spectrum which
reduces to its classical counterpart in the nonrelativistic limit.
This is precisely the motivation of this paper. We wish to
calculate the RB spectrum for the linearized relativistic hy-
drodynamic equations that arise in three cases: using the
Eckart-Landau Lifshitz formalism �7,8�, a relativistic gener-
alization of Meixner’s theory �9�, and considering the equa-
tions obtained by the authors �10,11� when the acceleration
term in Eckart’s theory is expressed in terms of �p using
Euler’s equations. We will refer to this case as the modified
Eckart’s theory.

In Secs. II–IV we shall establish the system of linearized
relativistic fluid equations for the three alternatives men-
tioned above and analyze the modifications to the RB spec-
trum in each case. Section V is devoted to the discussion of
the results and final remarks.

II. MEIXNER-TYPE FORMALISM

The first formalism we wish to analyze consists of the
relativistic generalization of Meixner’s formalism �9�. In it,
the heat flux is not considered as part of the momentum-
energy tensor but is included in a separate total-energy flux
conservation equation. As a result, the constitutive equation
for the heat flux retains its Fourier-type structure. The hydro-
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dynamic equations for this formalism have been obtained
elsewhere �9,11,12�. The fluctuations, here denoted by a �
prefix, evolve to the equilibrium state following the linear-
ized version of such equations. Thus, the dynamics of the
fluctuations is given by

�ṅ + n0�� = 0, �2�

�̃0��̇ +
1

n0�T
�2�n +




�T
�2�T − A�2�� = 0, �3�

�Ṫ +
T0


n0cn�T
�� − DT�2�T = 0. �4�

The second equation is a balance equation for the longitudi-
nal component of the fluctuations in the hydrodynamic ve-
locity given by ��	�u;�

� , where u� is the hydrodynamic
four-vector velocity. This equation is obtained by calculating
the divergence of the momentum balance equation, a proce-
dure which decouples the transverse mode whose dynamics
has been already analyzed in a separate work �16�. Here n is
the particle number density, T the temperature, �T the iso-
thermal compressibility, 
 the thermal-expansion coefficient,
Cn the heat capacity at constant particle density, and A=�
+4� /3. We have defined �̃0= �n0�0+ p0� /c2, where �0 and p0
are the internal energy and pressure, respectively. The naught
subscripts denote equilibrium values, the semicolon a cova-
riant derivative, and a colon a component of a gradient.
Greek indices run from 1 to 4 and Latin ones from 1 to 3.

As mentioned above, the procedure to obtain the spectrum
is the standard one and involves calculating the dispersion
relation arising from the determinant of the Fourier-Laplace
transformed hydrodynamic system of equations. For Eqs.
�2�–�4� we obtain that



s n0 0

−
1

�̃0n�T

q2 s +
A

�̃0

q2 −



�̃0�T

q2

0
T0


n0cn�T
s + DTq2 
 = 0, �5�

which yields a cubic dispersion relation which can be written
as follows:

s3 + a2s2q2 + s�a3q4 + a4q2� + a5q4 = 0, �6�

where the coefficients are given by

a2 =
A

�̃0

+ DT,

a3 =
A

�̃0

DT,

a4 =



�T�̃0

,

a5 =
DT

�T�̃0

, �7�

and we have used the relation

2T0

cnn0�T
=

cp−cn

cn
=
−1. One can

easily show that Eq. �3� has one real root given by

s1 = −
a5

a4
q2 �8�

and a pair of conjugate roots

s2,3 = �−
a2

2
+

a5

2a4
�q2 � i�a4q . �9�

The analysis follows exactly as in the nonrelativistic case
�4–6� where it is shown that Eqs. �8� and �9� are valid up to
terms of order q4. Recalling that S�q� ,�� is the density-
density self-correlation function, we may plot the ratio be-
tween the dynamic and static structure factors, S�q� ,�� /S�q�,
as a function of � for a fixed q which should yield three
peaks given by the roots of the cubic equation. The mean
width of the central peak, the Rayleigh peak, is determined
by the real root given in Eq. �8� and thus, for the Meixner,
case we obtain a width

�RM =
DT



q2. �10�

A correction due to the modified value of the thermal con-
ductivity � for relativistic fluids will arise and thus one ex-
pects to observe a change in the width of the peak.

The location and width of the other two peaks, the Bril-
louin peaks, are determined by the conjugate roots given in
Eq. �9�. The location of the peaks is given by the imaginary
part while the width is given by the real part. In this case the
doublet appears at �= ��a4q so that from Eqs. �7� it follows
that

�M = �� 


�T�̃0

q . �11�

One should find a shift in this location due to the relativistic
value of �̃0. The width of the doublet is given by the real part
of s2,3, that is

�B = �a2

2
−

a5

2a4
�q2, �12�

and in this case we have

�BM =
1

2
� A

�̃0

+

 − 1



DT�q2, �13�

where once again, a correction due to the relativistic values
of DT and �̃0 is expected. In both Eqs. �10� and �13� one
recovers the nonrelativistic expressions when c→� as in this
case �̃0→�0, the equilibrium density.

III. ECKART’S FRAMEWORK

Eckart’s theory for relativistic fluids �7� is based on the
construction of a momentum-energy tensor where heat flux is
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included. As a consequence, in order to satisfy the second
law of thermodynamics, he proposed a rather controversial
constitutive equation for the heat flux in which a hydrody-
namic acceleration term is included. This proposal has been
claimed to render the theory unphysical and motivated the
use of extended theories as alternatives �13–15�, as has been
thoroughly discussed �10–12,16�. The aim of this section of
to present the effect of such constitutive equation in the
structure of the RB spectrum. Thus, once again, the starting
point is the linearized set of equations for the fluctuations in
a relativistic fluid, now within Eckart’s theory, which are
shown in Ref. �16� to read as

�ṅ + n0�� = 0, �14�

�̃0��̇ +
1

n0�T
�2�n +




�T
�2�T − A�2�� −

�

c2�2�Ṫ −
�T0

c4 ��̈

= 0, �15�

�Ṫ +
T0


n0cn�T
�� − DT�2�T −

DTT0

c2 ��̇ = 0. �16�

Indeed, the two terms −
�T0

c4 ��̈ and −
DTT0

c2 ��̇ in Eqs. �15� and
�16� come from Eckart’s proposal for the heat flux constitu-
tive equation depending on the hydrodynamic acceleration
through the term − T

c2 u̇� �see Eq. �19��. All quantities appear-
ing in these equations are the same ones as appear in Eqs.
�2�–�4�.

Proceeding as in the previous case, we analyze the disper-
sion relation which is now given by



s n0 0

−
1

n�T
q2 −

�T0

c4 s2 + �̃0s + Aq2 �

c2q2s −



�T
q2

0
T0


n0cn�T
−

DTT0

c2 s s + DTq2 
 = 0,

�17�

which yields a quartic polynomial, namely,

b1s4 + s3 + b2s2q2 + s�b3q4 + a4q2� + b5q4 = 0, �18�

with the coefficients given by

b1 = −
�T0

c4�̃0

,

b2 =
A

�̃0

+ DT�1 −
2
T0

c2�T�̃0
� ,

b3 =
ADT

�̃0

,

b4 =



�T�̃0

,

b5 =
DT

�T�̃0

.

We now attempt a rather intuitive but accurate solution to
Eq. �18�. Notice that the coefficient of s4 is very small. Ne-
glecting it, we can readily identify three roots, namely,

s1 = −
b5

b4
q2,

s2,3 = �−
b2

2
+

b5

2b4
�q2 � i�b4q .

Now, we assume that these three roots are still approximate
solutions to the quartic and find the fourth root by using the
property that, since the coefficient of s3 is equal to one,
�i=1

4 si=− 1
b1

, and thus

s4 

c4�̃0

�T0
+ � A

�̃0

+ DT�1 −
2
T0

c2�̃0�T
��q2.

Since 
 /�T�0, the fourth root s4 is always positive. A real
positive root in the dispersion relation yields an exponential
growth in the structure factor instead of a finite spectrum.
This behavior is unphysical and simply implies that the RB
spectrum does not exist in Eckart’s formalism even in the
nonrelativistic limit.

IV. MODIFIED ECKART’S THEORY

The system of equations we consider in this section is
obtained, as in the previous one, from a momentum-energy
tensor which includes relativistic heat flux terms. The key
difference here is that the constitutive equation introduced
for the heat flux is obtained through the following argument.
According to Eckart, such constitutive equation is given by

J�Q�
� = − �h�

��T,� +
T

c2 u̇�� , �19�

where the second term, as argued before �16�, violates the
tenets of classical irreversible thermodynamics since it is nei-
ther a thermodynamic force nor a flux. Further, it has another
serious drawback, namely, it raises u̇� to the category of a
state variable, a set already chosen to be given by n, u�, and
T. Thus, the resulting set of hydrodynamic equations would
be overdetermined. Therefore, to keep Eq. �19� to first order
in the gradients, we eliminate u̇� using Euler’s equation

�̃0u̇� = − p,�h��. �20�

Now, according to the local equilibrium assumption,

p,� =



�T
T,� +

1

n0�T
n,�, �21�

and thus, substitution of Eq. �21� in Eq. �19� yields

J�Q�
� = − ��1 +

T0

c2�̃0




�T
�T,� −

�T0

n0�Tc2�̃0

n,� �22�

or
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J�Q�
� = − LTTT,� − LnTn,�, �23�

where LTT is an “effective thermal conductivity” given by

LTT = ��1 +

T0

c2�̃0�T
� �24�

and LnT a new transport coefficient given by
�T0

n0�Tc2�̃0
which

has no classical counterpart. We would like to remark that an
equation similar in structure to Eq. �23� was already derived
by Landau and Lifshitz �8�.

Clearly these transport coefficients can also be calculated
from a kinetic model but we shall discuss such calculation in
a separate paper. The equations in this formalism need not be
justified in detail since they follow simply from the method
used to obtain Eckart’s equations incorporating the terms
arising from Eq. �23� for the heat flux. Thus we obtain that

�ṅ + n0�� = 0, �25�

�̃0��̇ +
1

n0�T
�2�n +




�T
�2�T − A�2�� −

LTT

c2 �2�Ṫ −
LnT

c2 �2�ṅ

= 0, �26�

�Ṫ +
T0


n0cn�T
�� −

LTT

n0cn
�2�T −

LnT

n0cn
�2�n = 0, �27�

and give rise to the dispersion relation



s n0 0

−
1

n0�T
q2 +

LnT

c2 sq2 �̃0s + Aq2 LTT

c2 q2s −



�T
q2

LnT

n0cn
q2 T0


n0cn�T
s +

LTT

n0cn
q2 
 = 0,

�28�

which can be written as

s3 + d2s2q2 + s�d3q4 + d4q2� + d5q4, �29�

where

d2 =
A

�̃0

+
LTT

n0cn
�1 −


T0

c2�T�̃0
� −

n0LnT

c2�̃0

, �30�

d3 =
ALTT

n0cn�̃0

, �31�

d4 =



�T�̃0

, �32�

d5 =
1

�T�̃0n0cn

�LTT − 
n0LnT� . �33�

Once more, following the steps outlined for the two previous
cases, one can identify the modifications to the spectrum, as
before, by analyzing the roots. For this case the width of the
Rayleigh peak is given by

�RS =
d5

d4
q2 =

q2

n0cn

�LTT − 
n0LnT� . �34�

The shift in the Brillouin doublet is the same as in the Meix-
ner case. In the particular case of an ideal gas, the properties
of �̃0 �17� guarantee that the position of the peaks will never
exceed �cq. On the other hand, the width is significantly
modified. We now obtain

�BS =
q2

2 � A

�̃0

+
LTT

n0cn
�1 −

1



−


T0

c2�T�̃0
� + LnT� 


cn

−

n0

c2�̃0
�� .

�35�

Equations �34� and �35� deserve further attention. The former
predicts a modification in Rayleigh’s peak which changes its
width due to the effective thermal conductivity given by Eq.
�24� and the presence of LnT; both, as stressed above, are
strictly relativistic effects. This is quite different from
Meixner-type theory where the correction arises only from
the relativistic value of � /cn. Moreover, the shape of Bril-
louin’s peaks is further altered due to several relativistic
terms as can be seen from Eq. �35�.

V. SUMMARY AND FINAL REMARKS

In the previous section, the modifications to the RB spec-
trum according to the three versions of relativistic irrevers-
ible thermodynamics have been explored. The difference be-
tween the modified Eckart’s theory result analyzed in Sec. IV
and Meixner’s case analyzed in Sec. II should be empha-
sized. The latter one does not have a density gradient in
“Fourier’s equation” which, as shown in Eq. �22�, is strictly
a relativistic factor. This poses an intriguing question,
namely, in both cases which are alternative versions of a
relativistic nonequilibrium theory; we predict the existence
of a RB spectrum. These spectra are different in both cases,
but contain modifications in comparison to the classical
spectrum and both reduce to it in nonrelativistic limit. Which
theory is the correct one? If we believe in fundamentals we
would be inclined to choose the version that is consistent
with the results obtained from kinetic theory and thus, as we
have shown in previous work �10�, the second theory pre-
vails. However, Eckart’s modified theory still contains the
heat flux as a component of the momentum-energy tensor
which still is debatable. On the other hand if we wish a
phenomenological theory that contains a density gradient in
the heat flux within the Meixner-type formalism we would
face the problem of how to introduce such term. The answers
to these puzzles are still open. We feel that Eckart’s original
approach may be discarded but the final answer as to which
is the appropriate version of a relativistic nonequilibrium
thermodynamics is still a challenge both theoretically and
experimentally. To facilitate the various results available for
the RB spectrum we have summarized them in the following
Table:
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Rayleigh’s peak width Brillouin peaks shift Brillouin peaks width

Nonrelativistic
DT


 q2 �� 

�0�T

q 1
2 � A

�0
+ 
−1


 DT�q2

Meixner
DT


 q2 �� 


�̃0�T
q 1

2 � A
�̃0

+ 
−1

 DT�q2

Eckart No spectrum No spectrum No spectrum

Modified Eckart q2

n0cn
 �LTT−
n0LnT� �� 


�̃0�T
q q2

2 � A
�̃0

+
LTT

n0cn
� 
−1


 −

T0

c2�T�̃0
�+LnT� 


cn
 −
n0

c2�̃0
��

where calligraphic letters are being used for relativistic transport coefficients in order to distinguish them from the nonrelativistic ones.
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